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Anticipating Effects of Climate
Change on Natural Systems

1. Units of Analysis: Species
versus Communities

2. Establishing baselines for
comparison

. Variables: Extremes or Means?

4. Projections for Future
Climates

5. Modeling Techniques
Model Interpretation

1. Spatial Scale

2. Temporal Scale

3. Assumptions

W

? Questionable Futures ?
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(from Bourgeron and Jensen 1994)
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Units of Analysis: Species versus Communities

]
Can treat a species, Can treat
subspecies, or an assemblage
population as a unit of plants as a unit

L g el ; |
Photo by: Dominic Oldershaw
http://mojave.usgs.gov/time-series/




Units of Analysis: Species versus Communities

xl

The Unit of Analysis
Should Represent a
Coherent group that
Responds similarly
To Environmental
Constraints

Typically Done at the Typically Done at the
Species level of Taxonomy Biome level of Classification
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Establishing baselines for comparison

Stake 1000 - Red Rock Canyon State Park

1933 April 15, 1999

“No Yuccas or other plants have persisted over the 66 years between the dates of the
photographs. In most of the repeat photography, few Yuccas appear to live longer
than about 40 years.” (Dominic Oldershaw)

http://mojave.usgs.gov/time-series/

“Johnson [46] indicates that large trees can be 300 years old, and Keith [54] suggests
that Joshua tree has an average life span of 150 years. Little [61] suggests that
Joshuatree is among the among the desert's "oldest living plants.” An approximately
60-foot-tall (20 m) tree in California was an estimated 1,000 years old [61].” (Gucker,
Corey L. 2006)


http://www.fs.fed.us/database/feis/plants/tree/yucbre/references.html#46
http://www.fs.fed.us/database/feis/plants/tree/yucbre/references.html#54
http://www.fs.fed.us/database/feis/plants/tree/yucbre/references.html#61
http://www.fs.fed.us/database/feis/plants/tree/yucbre/references.html#61
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FIGURE 1 Historical range of variability in ecosystem processes or structure over time

(from Morgan et al. 1994).

3.5.3.1. Baseline Period (IPCC 2001)

Any climate scenario must adopt a reference
baseline period from which to calculate changes
in climate. This baseline data set serves to
characterize the sensitivity of the exposure
unit to present-day climate it should be
representative of the present-day or recent
average climate in the study region and of a
sufficient duration to encompass a range of
climatic variations, including several significant
weather anomalies (e.g., severe droughts or cool
seasons).

A popular climatological baseline period is a 30-
year "normal” period, as defined by the WMO.
The current WMO normal period is 1961-1990,
which provides a standard reference for many
impact studies. Note, however, that in some
regions, observations during this time period may
exhibit anthropogenic climate changes relative to
earlier periods.
http://www.grida.no/climate/ipcc_tar/wg2/144.ht
m

Colorado Plateau Average Annual Temperature: Comparing Baselines
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3.5.4.1. Choosing Variables

of Interest (1PCC 2001)

“Most scenarios are
conventionally based on

chanages in monthly mean

climate, although with
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e Maximum Annual Temperature
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Precipitation Extremes from 1930-1969

greater quantities of model
output now being saved
operationally, daily output
and information on certain
types of extreme events .....
can be accessed readily.
However, consideration must
be given to whether model
output regarding a particular
Dhenomenon IS deemed

"meaningful.“”

http://www.grida.no/climate/i

Year
— 1 830-1569 Mean Precipitation

pcc tar/wg2/144.htm



http://www.grida.no/climate/ipcc_tar/wg2/144.htm
http://www.grida.no/climate/ipcc_tar/wg2/144.htm

Variables: Extremes or Means?
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e GCMs Results
Vary In:
— Emission
Scenario

— Version or
Model Run

e Model Selection
— Ability to
simulate

present climatic
patterns

— Range of
predictions

— To compare
between other
Impact models

Global surface warming (°C)
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SRES Alb: Global Temperature

1.8°-4.4°C = 5.4-7.9°F
http://www.ipcc.ch
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Model Selection

— Ability to simulate present climatic patterns: 1950-1999 Average

Precipitation Patterns

Observed

Millimeters

Simulated: ukmo_hadgem]1

10 25 50 TS 100 125

150 200 300

AR4 GCM using AIB

# Rank Score Scenario
1 1 10 ukmo_hadgem1
2 2 26 mpi_echam5

3 3 27 ingv_echam4

4 4 29 mri_cgcm2

5 5 35 gfdl_cm21

6 6 37 ccma_cgema3

7 6 37 giss e h

8 7 38 ukmo.hadcm3
9 8 39 miroc3_medres
10 9 42 cnrm_cm3

11 9 42 csiro_mk3

12 10 44 miroc3_hires
13 11 50 miub_echo

14 11 50 ncar_ccsm3

15 12 53 giss_ e r

16 13 56 ncar_pcm1

17 14 58 bcer_bem2

18 15 62 gfdl_cm20

19 16 63 giss_aom
20 17 67 iap_fgoals

21 18 71 ispl_cm4

22 19 76 inmem3




Model Selection

— Ability to simulate present climatic patterns: 1950-1999 Average
Precipitation Patterns
Simulated: inmem3_C

Observed

Millimeters

10 aR ) e

100 1258 180 200 4200

AR4 GCM using AIB

# Rank Score Scenario
1 1 10 ukmo_hadgem1
2 2 26 mpi_echam5

3 3 27 ingv_echam4

4 4 29 mri_cgcm2

5 5 35 gfdl_cm21

6 6 37 ccma_cgema3

7 6 37 giss_ e h

8 7 38 ukmo.hadcm3
9 8 39 miroc3_medres
10 9 42 cnhrm_cm3

11 9 42 csiro_mk3

12 10 44 miroc3_hires
13 1" 50 miub_echo

14 11 50 ncar_ccsm3

15 12 53 giss_ e r

16 13 56 ncar_pcm1

17 14 58 bcer_bem2

18 15 62 gfdl_cm20

19 16 63 giss_aom
20 17 67 iap_fgoals
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22 19 76 inmcm3




Probability Density Function

Distribution of Model "scores"
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Precipitation — Evaporation Anomaly(25N—40N,95W—125W)
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Model Projections of an Imminent Transition to a More Arid Climate in
Southwestern North America

Richard Seager.! Mingfang Ting. Isaac Held.*” Yochanan Kushnir.' Jian Lu.* Gabriel Vecchi,* Huei-Ping

R 2 . 23 (o -1 e %7 1 a1l
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'Lamont Doherty Earth Observatory of Columbia University, Palisades. NY. USA. “NOAA Geophysical Fluid Dynamics
Laboratory. Princeton. NJ, USA. *Program in Atmospheric and Oceanic Sciences, Department of Geosciences, Princeton

University, Princeton, NJ. USA. *National Center for Atmospheric Research. Boulder. CO. USA. *Tel Aviv University. Tel
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Sciencexpress / www.sciencexpress.org / 5 April 2007 / Page 4 / 10.1126/science.1139601
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Likelihood of Yucca brevifolia
Presence for the 20" Century and Future 2xCO, Climate

20™ Century Climate Potential Future 2xCO, Climate
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Comparison to other Predictions

Yuececa brevifolia Joshua Tree

% v |
i
| A £l | 4
4 kY -l i
|
| | :
i T | = . i
(i ..r[\."h. 1‘-"'-J_=|! L:"'ull'l R :Ir"-"- .I'--r_'.'_-..
HADCM?Z (2080-99) CGCM1 (2000-08) CSIRO (2080-99)
No Change - B 1
Il Contraction B B
[l Extension I 2 modals I 2 modals

Shafer, S. L., P. J. Bartlein, and R. S. Thompson. 2001. Potential changes in the
distributions of Western North America tree and shrub taxa under future
climate scenarios. Ecosystems 4. 200-215.
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Total Precipitation (in.)

TWENTYNINE PALMS, CALIFORNIA
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Climate Center, Historical Climate
Information
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e Because Temperatures are
iIncreasing the disparity
between temperature and
precipitation are increasing,
making dry years extremely
stressful for perennial plant
species and wildlife

Even if average precipitation
remains constant or even
Increases, periodic events
with low precipitation
combined with increasing
temperatures will be
stressful for perennial plant
species



Joshua Tree (Yucca brevifolia) Macrofossil Record GISP2 Ice Core
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_ Algorithms used to Predict

e Two Basic Types

— Dynamic Vegetation Models

e Simulations often including disturbance regimes (fire),
nutrient cycling, and carbon budgets

e Rule based and often parameterized
e Measures typically are in terms of biomass or leaf area
indices
e Examples include: VEMAP, MAPSS, MC1
— Statistical Models

e Various statistical procedures used to derive a
mathematical relationship between independent variables
and a dependent variable

e Measures typically are species occurrences, sometimes
vegetation types

e Common Statistics Used: Regression Trees, Various types
of Regression, GARP, BIOCLIM, Maxent



_ Dynamic Vegetation Models

From: Climate Change Effects on Vegetation distribution and Carbon Budget in the U.S.
D. Bachelet, R.P. Neilson, J.M. Lenihan, and R.J. Drapek.
Ecosystems 4(3):164-185 (2001)

MAPSS - Historical 1961-1980 MC1 - 1880 Figure 6. Potential vegeta-

' tion distribution simulated
by MAPSS and MCI for cur-
rent conditions (baseline his-
torical climate for MAPSS,
1990 for MC1) and for fu-
ture conditions (2070-99 for
MAPSS and 2095 for MC1)
under two scenarios:
HADCM2SUL and CGCM1
at 0.5° latitude/longitude
resolution. The color legend

is identical to that of Figure
3.

MAPSS - CGCM 20070 - 2088 MC1 - CGCM 2005
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From: Ron Neilson. 2007. Climate Change, Uncertainty and Forecasts of Global to Landscape
Ecosystem Dynamics, Presentation Given at the Colorado Plateau 9" Biennial Conference, Flagstaff,
AZ.
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From: Ron Neilson. 2007. Climate Change, Uncertainty and Forecasts of Global to Landscape

Ecosystem Dynamics, Presentation Given at the Colorado Plateau 9" Biennial Conference, Flagstaff,
AZ.
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Desertscrub

Present 2030 2090
From: Gerald E. Rehfeldt, Nicholas L. Crookston, Marcus V. Warwell, and Jeffrey S. Evans.
2006. EMPIRICAL ANALYSES OF PLANT-CLIMATE RELATIONSHIPS FOR THE WESTERN

UNITED STATES. International Journal of Plant Sciences. 167(6):1123-1150.



Summary

e Recent Predictions from a variety of Predictive
Modeling Efforts are Consistent in their
predictions SW Desert Regions are likely to
Lose Their Existing Vegetation Types

— An already extreme environment Is predicted by
GCMs to become even more extreme by increasing
temperatures

e Assumptions and Uncertainties
— Long term increased COZ2 affects on plants
— Migration Potentials
— Selection pressure and ability to adapt

— Changes In community dynamics such as
competition, predation, etc

— Most Predictions Predict Potential niches either
from assuming equilibrium with environmental
constraints or not being able to include all limiting
factors
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